Copied to
clipboard

?

G = C24.43D6order 192 = 26·3

32nd non-split extension by C24 of D6 acting via D6/C3=C22

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C24.43D6, C6.242+ (1+4), C22⋊C4.1D6, C22≀C2.3S3, (D4×Dic3)⋊11C2, (C2×D4).149D6, (C2×C6).131C24, (C2×C12).26C23, Dic3⋊C47C22, C4⋊Dic324C22, C2.26(D46D6), C23.12D611C2, (C2×Dic6)⋊19C22, (C4×Dic3)⋊13C22, (C6×D4).110C22, C23.8D611C2, C23.16D62C2, C23.23D63C2, (C23×C6).67C22, Dic3.D412C2, C34(C22.45C24), C6.D412C22, (C22×C6).180C23, C23.186(C22×S3), C22.152(S3×C23), C22.17(D42S3), (C2×Dic3).220C23, (C22×Dic3)⋊11C22, C6.76(C2×C4○D4), (C3×C22≀C2).2C2, (C2×C6).43(C4○D4), C2.27(C2×D42S3), (C2×C4).26(C22×S3), (C2×C6.D4)⋊19C2, (C3×C22⋊C4).2C22, SmallGroup(192,1146)

Series: Derived Chief Lower central Upper central

C1C2×C6 — C24.43D6
C1C3C6C2×C6C2×Dic3C22×Dic3D4×Dic3 — C24.43D6
C3C2×C6 — C24.43D6

Subgroups: 576 in 248 conjugacy classes, 99 normal (27 characteristic)
C1, C2, C2 [×2], C2 [×6], C3, C4 [×11], C22, C22 [×4], C22 [×14], C6, C6 [×2], C6 [×6], C2×C4, C2×C4 [×2], C2×C4 [×15], D4 [×5], Q8, C23 [×2], C23 [×2], C23 [×5], Dic3 [×8], C12 [×3], C2×C6, C2×C6 [×4], C2×C6 [×14], C42 [×3], C22⋊C4, C22⋊C4 [×2], C22⋊C4 [×11], C4⋊C4 [×8], C22×C4 [×5], C2×D4, C2×D4 [×2], C2×Q8, C24, Dic6, C2×Dic3 [×8], C2×Dic3 [×7], C2×C12, C2×C12 [×2], C3×D4 [×5], C22×C6 [×2], C22×C6 [×2], C22×C6 [×5], C2×C22⋊C4 [×2], C42⋊C2 [×2], C4×D4 [×2], C22≀C2, C22⋊Q8 [×2], C22.D4 [×3], C4.4D4, C422C2 [×2], C4×Dic3, C4×Dic3 [×2], Dic3⋊C4 [×6], C4⋊Dic3 [×2], C6.D4, C6.D4 [×10], C3×C22⋊C4, C3×C22⋊C4 [×2], C2×Dic6, C22×Dic3, C22×Dic3 [×4], C6×D4, C6×D4 [×2], C23×C6, C22.45C24, C23.16D6 [×2], Dic3.D4 [×2], C23.8D6 [×2], D4×Dic3 [×2], C23.23D6, C23.23D6 [×2], C23.12D6, C2×C6.D4 [×2], C3×C22≀C2, C24.43D6

Quotients:
C1, C2 [×15], C22 [×35], S3, C23 [×15], D6 [×7], C4○D4 [×4], C24, C22×S3 [×7], C2×C4○D4 [×2], 2+ (1+4), D42S3 [×4], S3×C23, C22.45C24, C2×D42S3 [×2], D46D6, C24.43D6

Generators and relations
 G = < a,b,c,d,e,f | a2=b2=c2=d2=e6=1, f2=d, ab=ba, eae-1=faf-1=ac=ca, ad=da, fbf-1=bc=cb, ebe-1=bd=db, cd=dc, ce=ec, cf=fc, de=ed, df=fd, fef-1=e-1 >

Smallest permutation representation
On 48 points
Generators in S48
(2 7)(4 9)(6 11)(14 48)(16 44)(18 46)(20 25)(22 27)(24 29)(32 40)(34 42)(36 38)
(1 19)(3 21)(5 23)(8 26)(10 28)(12 30)(13 47)(14 40)(15 43)(16 42)(17 45)(18 38)(31 39)(32 48)(33 41)(34 44)(35 37)(36 46)
(1 12)(2 7)(3 8)(4 9)(5 10)(6 11)(13 47)(14 48)(15 43)(16 44)(17 45)(18 46)(19 30)(20 25)(21 26)(22 27)(23 28)(24 29)(31 39)(32 40)(33 41)(34 42)(35 37)(36 38)
(1 19)(2 20)(3 21)(4 22)(5 23)(6 24)(7 25)(8 26)(9 27)(10 28)(11 29)(12 30)(13 31)(14 32)(15 33)(16 34)(17 35)(18 36)(37 45)(38 46)(39 47)(40 48)(41 43)(42 44)
(1 2 3 4 5 6)(7 8 9 10 11 12)(13 14 15 16 17 18)(19 20 21 22 23 24)(25 26 27 28 29 30)(31 32 33 34 35 36)(37 38 39 40 41 42)(43 44 45 46 47 48)
(1 46 19 38)(2 45 20 37)(3 44 21 42)(4 43 22 41)(5 48 23 40)(6 47 24 39)(7 17 25 35)(8 16 26 34)(9 15 27 33)(10 14 28 32)(11 13 29 31)(12 18 30 36)

G:=sub<Sym(48)| (2,7)(4,9)(6,11)(14,48)(16,44)(18,46)(20,25)(22,27)(24,29)(32,40)(34,42)(36,38), (1,19)(3,21)(5,23)(8,26)(10,28)(12,30)(13,47)(14,40)(15,43)(16,42)(17,45)(18,38)(31,39)(32,48)(33,41)(34,44)(35,37)(36,46), (1,12)(2,7)(3,8)(4,9)(5,10)(6,11)(13,47)(14,48)(15,43)(16,44)(17,45)(18,46)(19,30)(20,25)(21,26)(22,27)(23,28)(24,29)(31,39)(32,40)(33,41)(34,42)(35,37)(36,38), (1,19)(2,20)(3,21)(4,22)(5,23)(6,24)(7,25)(8,26)(9,27)(10,28)(11,29)(12,30)(13,31)(14,32)(15,33)(16,34)(17,35)(18,36)(37,45)(38,46)(39,47)(40,48)(41,43)(42,44), (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48), (1,46,19,38)(2,45,20,37)(3,44,21,42)(4,43,22,41)(5,48,23,40)(6,47,24,39)(7,17,25,35)(8,16,26,34)(9,15,27,33)(10,14,28,32)(11,13,29,31)(12,18,30,36)>;

G:=Group( (2,7)(4,9)(6,11)(14,48)(16,44)(18,46)(20,25)(22,27)(24,29)(32,40)(34,42)(36,38), (1,19)(3,21)(5,23)(8,26)(10,28)(12,30)(13,47)(14,40)(15,43)(16,42)(17,45)(18,38)(31,39)(32,48)(33,41)(34,44)(35,37)(36,46), (1,12)(2,7)(3,8)(4,9)(5,10)(6,11)(13,47)(14,48)(15,43)(16,44)(17,45)(18,46)(19,30)(20,25)(21,26)(22,27)(23,28)(24,29)(31,39)(32,40)(33,41)(34,42)(35,37)(36,38), (1,19)(2,20)(3,21)(4,22)(5,23)(6,24)(7,25)(8,26)(9,27)(10,28)(11,29)(12,30)(13,31)(14,32)(15,33)(16,34)(17,35)(18,36)(37,45)(38,46)(39,47)(40,48)(41,43)(42,44), (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48), (1,46,19,38)(2,45,20,37)(3,44,21,42)(4,43,22,41)(5,48,23,40)(6,47,24,39)(7,17,25,35)(8,16,26,34)(9,15,27,33)(10,14,28,32)(11,13,29,31)(12,18,30,36) );

G=PermutationGroup([(2,7),(4,9),(6,11),(14,48),(16,44),(18,46),(20,25),(22,27),(24,29),(32,40),(34,42),(36,38)], [(1,19),(3,21),(5,23),(8,26),(10,28),(12,30),(13,47),(14,40),(15,43),(16,42),(17,45),(18,38),(31,39),(32,48),(33,41),(34,44),(35,37),(36,46)], [(1,12),(2,7),(3,8),(4,9),(5,10),(6,11),(13,47),(14,48),(15,43),(16,44),(17,45),(18,46),(19,30),(20,25),(21,26),(22,27),(23,28),(24,29),(31,39),(32,40),(33,41),(34,42),(35,37),(36,38)], [(1,19),(2,20),(3,21),(4,22),(5,23),(6,24),(7,25),(8,26),(9,27),(10,28),(11,29),(12,30),(13,31),(14,32),(15,33),(16,34),(17,35),(18,36),(37,45),(38,46),(39,47),(40,48),(41,43),(42,44)], [(1,2,3,4,5,6),(7,8,9,10,11,12),(13,14,15,16,17,18),(19,20,21,22,23,24),(25,26,27,28,29,30),(31,32,33,34,35,36),(37,38,39,40,41,42),(43,44,45,46,47,48)], [(1,46,19,38),(2,45,20,37),(3,44,21,42),(4,43,22,41),(5,48,23,40),(6,47,24,39),(7,17,25,35),(8,16,26,34),(9,15,27,33),(10,14,28,32),(11,13,29,31),(12,18,30,36)])

Matrix representation G ⊆ GL6(𝔽13)

100000
010000
001000
000100
000010
0000012
,
1200000
1010000
001000
000100
0000120
000001
,
100000
010000
001000
000100
0000120
0000012
,
1200000
0120000
001000
000100
0000120
0000012
,
180000
0120000
009000
003300
000001
000010
,
500000
050000
0010600
003300
000008
000080

G:=sub<GL(6,GF(13))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,12],[12,10,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,12,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,12,0,0,0,0,0,0,12],[12,0,0,0,0,0,0,12,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,12,0,0,0,0,0,0,12],[1,0,0,0,0,0,8,12,0,0,0,0,0,0,9,3,0,0,0,0,0,3,0,0,0,0,0,0,0,1,0,0,0,0,1,0],[5,0,0,0,0,0,0,5,0,0,0,0,0,0,10,3,0,0,0,0,6,3,0,0,0,0,0,0,0,8,0,0,0,0,8,0] >;

39 conjugacy classes

class 1 2A2B2C2D2E2F2G2H2I 3 4A4B4C4D···4K4L4M4N4O6A6B6C6D···6I6J12A12B12C
order122222222234444···444446666···66121212
size111122224424446···6121212122224···48888

39 irreducible representations

dim11111111122222444
type++++++++++++++-
imageC1C2C2C2C2C2C2C2C2S3D6D6D6C4○D42+ (1+4)D42S3D46D6
kernelC24.43D6C23.16D6Dic3.D4C23.8D6D4×Dic3C23.23D6C23.12D6C2×C6.D4C3×C22≀C2C22≀C2C22⋊C4C2×D4C24C2×C6C6C22C2
# reps12222312113318142

In GAP, Magma, Sage, TeX

C_2^4._{43}D_6
% in TeX

G:=Group("C2^4.43D6");
// GroupNames label

G:=SmallGroup(192,1146);
// by ID

G=gap.SmallGroup(192,1146);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,224,219,1571,297,6278]);
// Polycyclic

G:=Group<a,b,c,d,e,f|a^2=b^2=c^2=d^2=e^6=1,f^2=d,a*b=b*a,e*a*e^-1=f*a*f^-1=a*c=c*a,a*d=d*a,f*b*f^-1=b*c=c*b,e*b*e^-1=b*d=d*b,c*d=d*c,c*e=e*c,c*f=f*c,d*e=e*d,d*f=f*d,f*e*f^-1=e^-1>;
// generators/relations

׿
×
𝔽